Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement
نویسندگان
چکیده
Plant genomes are larger and more complex than other eukaryotic organisms, due to small and large duplication events, recombination and subsequent reorganization of the genetic material. Commercially important cotton is the result of a polyploidization event between Old and New World cottons that occurred over one million years ago. Allotetraploid cotton has properties that are dramatically different from its progenitors-most notably, the presence of long, spinnable fibers. Recently, the complete genome of a New World cotton ancestral species, Gossypium raimondii, was completed. Future genome sequencing efforts are focusing on an Old World progenitor, G. arboreum. This sequence information will enable us to gain insights into the evolution of the cotton genome that may be used to understand the evolution of other plant species. The chloroplast genomes of multiple cotton species and races have been determined. This information has also been used to gain insight into the evolutionary history of cotton. Analysis of the database of nuclear and organellar sequences will facilitate the identification of potential genes of interest and subsequent development of strategies for improving cotton.
منابع مشابه
Estimation of genetic parameters for quantitative and qualitative traits in cotton cultivars (Gossypium hirsutum L. & Gossypium barbadense L.) and new scaling test of additive– dominance model
A complete diallel cross of nine cotton genotypes (Gossypium hirsutum L. & Gossypium barbadense L.) viz Delinter, Sindose-80, Omoumi, Bulgare-539, Termez-14, Red leaf (Native species), B-557, Brown fiber and Siokra-324 having diverse genetic origins was conducted over two years to determine the potential for the improvement of yield, its components, oil and fiber qual...
متن کاملAnalysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids
BACKGROUND Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were...
متن کاملParallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton.
A putative advantage of allopolyploidy is the possibility of differential selection of duplicated (homeologous) genes originating from two different progenitor genomes. In this note we explore this hypothesis using a high throughput, SNP-specific microarray technology applied to seed trichomes (cotton) harvested from three developmental time points in wild and modern accessions of two independe...
متن کاملAnalysis of plastid DNA-like sequences within the nuclear genomes of higher plants.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypiu...
متن کاملThe Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes
BACKGROUND Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (...
متن کامل